open import Algebra.Group.Cat.Base
open import Algebra.Group

open import Cat.Instances.Sets.Complete as SL
open import Cat.Prelude

module Algebra.Group.Cat.FinitelyComplete {} where

Finite limits of groups🔗

We present explicit computations of finite limits in the category of groups, though do note that the terminal group is also initial (i.e. it is a zero object). Knowing that the category of groups admits a right adjoint functor into the category of sets (the underlying set functor) drives us in computing limits of groups as limits of sets, and equipping those with a group structure: we are forced to do this since right adjoints preserve limits.

The zero group🔗

open import Cat.Diagram.Terminal (Groups )
open import Cat.Diagram.Initial (Groups )
open import Cat.Diagram.Zero (Groups )

The zero object in the category of groups is given by the unit type, equipped with its unique group structure. Correspondingly, we may refer to this group in prose either as 00 or as {}\{\star\}.

Zero-group :  {}  Group 
Zero-group = Lift _  , make-group
   x y p q i j  lift tt)
  (lift tt)  _ _  lift tt)  _  lift tt)
   _ _ _  refl)  x  refl)  x  refl)  x  refl)

Zero-group-is-initial : is-initial Zero-group
Zero-group-is-initial (_ , G) .centre =  x  G.unit) , gh where
  module G = Group-on G
  gh : Group-hom _ _  x  G.unit)
  gh .pres-⋆ x y =
    G.unit            ≡˘⟨ G.idl ≡˘
    G.unit G.⋆ G.unit 
Zero-group-is-initial (_ , G) .paths x =
  Forget-is-faithful (funext λ _  sym (Group-hom.pres-id (x .snd)))

Zero-group-is-terminal : is-terminal Zero-group
Zero-group-is-terminal _ .centre =
   _  lift tt) , (record { pres-⋆ = λ _ _ _  lift tt })
Zero-group-is-terminal _ .paths x = Forget-is-faithful refl

Zero-group-is-zero : is-zero Zero-group
Zero-group-is-zero = record
  { has-is-initial = Zero-group-is-initial
  ; has-is-terminal = Zero-group-is-terminal

∅ᴳ : Zero
∅ᴳ .Zero.∅ = Zero-group
∅ᴳ .Zero.has-is-zero = Zero-group-is-zero

Direct products🔗

open import Cat.Diagram.Product (Groups )

We compute the product of two groups G×HG \times H as the product of their underlying sets, equipped with the operation of “pointwise addition”.

Direct-product : Group   Group   Group 
Direct-product (G , Gg) (H , Hg) = (G × H) , G×Hg where
  module G = Group-on Gg
  module H = Group-on Hg

    gh-set : is-set (G × H)
    gh-set = ×-is-hlevel 2 G.has-is-set H.has-is-set

  G×Hg : Group-on (G × H)
  G×Hg = make-group gh-set
    (G.unit , H.unit)
     { (a , b) (x , y)  a G.⋆ x , b H.⋆ y })
     { (a , b)  a G.⁻¹ , b H.⁻¹ })
     { x y z  ap₂ _,_ (sym G.associative) (sym H.associative) })
     x  ap₂ _,_ G.inversel H.inversel)
     x  ap₂ _,_ G.inverser H.inverser)
     x  ap₂ _,_ G.idl H.idl)

The projection maps and universal factoring are all given exactly as for the category of sets.

proj₁ : Groups.Hom (Direct-product G H) G
proj₁ .fst = fst
proj₁ .snd .pres-⋆ x y = refl

proj₂ : Groups.Hom (Direct-product G H) H
proj₂ .fst = snd
proj₂ .snd .pres-⋆ x y = refl

factor : Groups.Hom G H  Groups.Hom G K  Groups.Hom G (Direct-product H K)
factor f g .fst x = f .fst x , g .fst x
factor f g .snd .pres-⋆ x y = ap₂ _,_ (f .snd .pres-⋆ _ _) (g .snd .pres-⋆ _ _)

Direct-product-is-product : is-product {G} {H} proj₁ proj₂
Direct-product-is-product {G} {H} = p where
  open is-product
  p : is-product _ _
  p .⟨_,_⟩ = factor
  p .π₁∘factor = Forget-is-faithful refl
  p .π₂∘factor = Forget-is-faithful refl
  p .unique other p q = Forget-is-faithful (funext λ x 
    ap₂ _,_ (happly (ap fst p) x) (happly (ap fst q) x))

What sets the direct product of groups apart from (e.g.) the cartesian product of sets is that both “factors” embed into the direct product, by taking the identity as the other coordinate: x(x,1)x \hookrightarrow (x, 1). Indeed, in the category of abelian groups, the direct product is also a coproduct.

inj₁ : G Groups.↪ Direct-product G H
inj₁ {G} {H} .mor .fst x = x , H .snd .unit
inj₁ {G} {H} .mor .snd .pres-⋆ x y = ap (_ ,_) (sym (H .snd .idl))
inj₁ {G} {H} .monic g h x = Forget-is-faithful (funext λ e i  x i .fst e .fst)

inj₂ : H Groups.↪ Direct-product G H
inj₂ {H} {G} .mor .fst x = G .snd .unit , x
inj₂ {H} {G} .mor .snd .pres-⋆ x y = ap (_, _) (sym (G .snd .idl))
inj₂ {H} {G} .monic g h x = Forget-is-faithful (funext λ e i  x i .fst e .snd)


open import Cat.Diagram.Equaliser

The equaliser of two group homomorphisms f,g:GHf, g : G \to H is given by their equaliser as Set-morphisms, equipped with the evident group structure. Indeed, we go ahead and compute the actual Equaliser in sets, and re-use all of its infrastructure to make an equaliser in Groups.

module _ {G H : Group } (f g : Groups.Hom G H) where
    module G = Group-on (G .snd)
    module H = Group-on (H .snd)

    module f = Group-hom (f .snd)
    module g = Group-hom (g .snd)
    module seq = Equaliser
        {A = G.underlying-set}
        {B = H.underlying-set}
        (fst f) (fst g))

Recall that points there are elements of the domain (here, a point x:Gx : G) together with a proof that f(x)=g(x)f(x) = g(x). To “lift” the group structure from GG to equ(f,g)\id{equ}(f,g), we must prove that, if f(x)=g(x)f(x) = g(x) and f(y)=g(y)f(y) = g(y), then f(xy)=g(xy)f(x\star y) = g(x\star y). But this follows from ff and gg being group homomorphisms:

  Equaliser-group : Group 
  Equaliser-group = _ , equ-group where
    equ-⋆ :  seq.apex    seq.apex    seq.apex 
    equ-⋆ (a , p) (b , q) = (a G.⋆ b) , r where abstract
      r : f .fst (G .snd ._⋆_ a b)  g .fst (G .snd ._⋆_ a b)
      r = f.pres-⋆ a b ·· ap₂ H._⋆_ p q ·· sym (g.pres-⋆ _ _)

    equ-inv :  seq.apex    seq.apex 
    equ-inv (x , p) = x G.⁻¹ , q where abstract
      q : f .fst (G.inverse x)  g .fst (G.inverse x)
      q = f.pres-inv ·· ap H._⁻¹ p ·· sym g.pres-inv

      invs : f .fst G.unit  g .fst G.unit
      invs = f.pres-id  sym g.pres-id

Similar yoga must be done for the inverse maps and the group unit.

    equ-group : Group-on  seq.apex 
    equ-group = make-group
      (seq.apex .is-tr)
      (G.unit , invs) equ-⋆ equ-inv
       x y z  Σ-prop-path  _  H.has-is-set _ _) (sym G.associative))
       x  Σ-prop-path  _  H.has-is-set _ _) G.inversel)
       x  Σ-prop-path  _  H.has-is-set _ _) G.inverser)
      λ x  Σ-prop-path  _  H.has-is-set _ _) G.idl

  open is-equaliser
  open Equaliser

We can then, pretty effortlessly, prove that the Equaliser-group, together with the canonical injection equ(f,g)G\id{equ}(f,g) \mono G, equalise the group homomorphisms ff and gg.

  Groups-equalisers : Equaliser (Groups ) f g
  Groups-equalisers .apex = Equaliser-group
  Groups-equalisers .equ = fst , record { pres-⋆ = λ x y  refl }
  Groups-equalisers .has-is-eq .equal = Forget-is-faithful seq.equal
  Groups-equalisers .has-is-eq .limiting {F = F} {e′} p = map , lim-gh where
    map = seq.limiting {F = underlying-set (F .snd)} (ap fst p)

    lim-gh : Group-hom F Equaliser-group map
    lim-gh .pres-⋆ x y = Σ-prop-path  _  H.has-is-set _ _) (e′ .snd .pres-⋆ _ _)

  Groups-equalisers .has-is-eq .universal {F = F} {p = p} = Forget-is-faithful
    (seq.universal {F = underlying-set (F .snd)} {p = ap fst p})

  Groups-equalisers .has-is-eq .unique {F = F} {p = p} q = Forget-is-faithful
    (seq.unique {F = underlying-set (F .snd)} {p = ap fst p} (ap fst q))

Putting all of these constructions together, we get the proof that Groups is finitely complete, since we can compute pullbacks as certain equalisers.

open import Cat.Diagram.Limit.Finite

Groups-finitely-complete : Finitely-complete (Groups )
Groups-finitely-complete = with-equalisers (Groups ) top prod Groups-equalisers
    top : Terminal
    top = Zero-group
    top .Terminal.has⊤ = Zero-group-is-terminal

    prod :  A B  Product A B
    prod A B .Product.apex = Direct-product A B
    prod A B .Product.π₁ = proj₁
    prod A B .Product.π₂ = proj₂
    prod A B .Product.has-is-product = Direct-product-is-product