open import Cat.Prelude

module Cat.Diagram.Equaliser { ℓ′} (C : Precategory  ℓ′) where


The equaliser of two maps f,g:ABf, g : A \to B, when it exists, represents the largest subobject of AA where ff and gg agree. In this sense, the equaliser is the categorical generalisation of a solution set: The solution set of an equation in one variable is largest subset of the domain (i.e. what the variable ranges over) where the left- and right-hand-sides agree.

record is-equaliser {E} (f g : Hom A B) (equ : Hom E A) : Type (  ℓ′) where
    equal     : f  equ  g  equ
    limiting  :  {F} {e′ : Hom F A} (p : f  e′  g  e′)  Hom F E
    universal :  {F} {e′ : Hom F A} {p : f  e′  g  e′}  equ  limiting p  e′
      :  {F} {e′ : Hom F A} {p : f  e′  g  e′} {lim' : Hom F E}
       e′  equ  lim'
       lim'  limiting p

  equal-∘ : f  equ  h  g  equ  h
  equal-∘ {h = h} =
    f  equ  h ≡⟨ extendl equal 
    g  equ  h 

    :  {F} {e′ : Hom F A} {p : f  e′  g  e′} {lim' lim'' : Hom F E}
     e′  equ  lim'
     e′  equ  lim''
     lim'  lim''
  unique₂ {p = p} q r = unique {p = p} q  sym (unique r)

We can visualise the situation using the commutative diagram below:

There is also a convenient bundling of an equalising arrow together with its domain:

record Equaliser (f g : Hom A B) : Type (  ℓ′) where
    {apex}  : Ob
    equ     : Hom apex A
    has-is-eq : is-equaliser f g equ

  open is-equaliser has-is-eq public

Equalisers are monic🔗

As a small initial application, we prove that equaliser arrows are always monic:

  :  {E} (equ : Hom E A)
   is-equaliser f g equ
   is-monic equ
is-equaliser→is-monic equ equalises g h p =
  g                ≡⟨ unique (sym p) 
  limiting equal-∘ ≡˘⟨ unique refl ≡˘
  where open is-equaliser equalises