open import 1Lab.Prelude module Data.Set.Coequaliser where
Set Coequalisersπ
In their most general form, colimits can be pictured as taking disjoint unions and then βgluing togetherβ some parts. The βgluing togetherβ part of that definition is where coequalisers come in: If you have parallel maps , then the coequaliser can be thought of as β, with the images of and identifiedβ.
data Coeq (f g : A β B) : Type (level-of A β level-of B) where inc : B β Coeq f g glue : β x β inc (f x) β‘ inc (g x) squash : is-set (Coeq f g)
The universal property of coequalisers, being a type of colimit, is a mapping-out property: Maps from are maps out of , satisfying a certain property. Specifically, for a map , if we have , then the map factors (uniquely) through inc. The situation can be summarised with the diagram below.
We refer to this unique factoring as Coeq-rec.
Coeq-rec : β {β} {C : Type β} {f g : A β B} β is-set C β (h : B β C) β (β x β h (f x) β‘ h (g x)) β Coeq f g β C Coeq-rec cset h h-coeqs (inc x) = h x Coeq-rec cset h h-coeqs (glue x i) = h-coeqs x i Coeq-rec cset h h-coeqs (squash x y p q i j) = cset (g x) (g y) (Ξ» i β g (p i)) (Ξ» i β g (q i)) i j where g = Coeq-rec cset h h-coeqs
An alternative phrasing of the desired universal property is precomposition with inc induces an equivalence between the βspace of maps which coequalise and β and the maps . In this sense, inc is the universal map which coequalises and .
To construct the map above, we used Coeq-elim-prop, which has not yet been defined. It says that, to define a dependent function from Coeq to a family of propositions, it suffices to define how it acts on inc: The path constructions donβt matter.
Coeq-elim-prop : β {β} {f g : A β B} {C : Coeq f g β Type β} β (β x β is-prop (C x)) β (β x β C (inc x)) β β x β C x Coeq-elim-prop cprop cinc (inc x) = cinc x
Since C was assumed to be a family of propositions, we automatically get the necessary coherences for glue and squash.
Coeq-elim-prop {f = f} {g = g} cprop cinc (glue x i) = is-propβpathp (Ξ» i β cprop (glue x i)) (cinc (f x)) (cinc (g x)) i Coeq-elim-prop cprop cinc (squash x y p q i j) = is-propβsquarep (Ξ» i j β cprop (squash x y p q i j)) (Ξ» i β g x) (Ξ» i β g (p i)) (Ξ» i β g (q i)) (Ξ» i β g y) i j where g = Coeq-elim-prop cprop cinc
Since βthe space of maps which coequalise and β is a bit of a mouthful, we introduce an abbreviation: Since a colimit is defined to be a certain universal (co)cone, we call these Coeq-cone
s.
private coeq-cone : β {β} (f g : A β B) β Type β β Type _ coeq-cone {B = B} f g C = Ξ£[ h β (B β C) ] (h β f β‘ h β g)
The universal property of Coeq then says that Coeq-cone
is equivalent to the maps , and this equivalence is given by inc, the βuniversal Coequalising mapβ.
Coeq-univ : β {β} {C : Type β} {f g : A β B} β is-set C β is-equiv {A = Coeq f g β C} {B = coeq-cone f g C} (Ξ» h β h β inc , Ξ» i z β h (glue z i)) Coeq-univ {C = C} {f = f} {g = g} cset = is-isoβis-equiv (iso cr' (Ξ» x β refl) islinv) where open is-iso cr' : coeq-cone f g C β Coeq f g β C cr' (f , f-coeqs) = Coeq-rec cset f (happly f-coeqs) islinv : is-left-inverse cr' (Ξ» h β h β inc , Ξ» i z β h (glue z i)) islinv f = funext (Coeq-elim-prop (Ξ» x β cset _ _) Ξ» x β refl)
Eliminationπ
Above, we defined what it means to define a dependent function when is a family of propositions, and what it means to define a non-dependent function . Now, we combine the two notions, and allow dependent elimination into families of sets:
Coeq-elim : β {β} {f g : A β B} {C : Coeq f g β Type β} β (β x β is-set (C x)) β (ci : β x β C (inc x)) β (β x β PathP (Ξ» i β C (glue x i)) (ci (f x)) (ci (g x))) β β x β C x Coeq-elim cset ci cg (inc x) = ci x Coeq-elim cset ci cg (glue x i) = cg x i Coeq-elim cset ci cg (squash x y p q i j) = is-setβsquarep (Ξ» i j β cset (squash x y p q i j)) (Ξ» i β g x) (Ξ» i β g (p i)) (Ξ» i β g (q i)) (Ξ» i β g y) i j where g = Coeq-elim cset ci cg
There is a barrage of combined eliminators, whose definitions are not very enlightening β you can mouse over these links to see their types: Coeq-elim-propβ Coeq-elim-propβ Coeq-elimβ Coeq-recβ.
Quotientsπ
With dependent sums, we can recover quotients as a special case of coequalisers. Observe that, by taking the total space of a relation , we obtain two projection maps which have as image all of the possible related elements in . By coequalising these projections, we obtain a space where any related objects are identified: The quotient .
private tot : β {β} β (A β A β Type β) β Type (level-of A β β) tot {A = A} R = Ξ£[ x β A ] Ξ£[ y β A ] R x y /-left : β {β} {R : A β A β Type β} β tot R β A /-left (x , _ , _) = x /-right : β {β} {R : A β A β Type β} β tot R β A /-right (_ , x , _) = x
We form the quotient as the aforementioned coequaliser of the two projections from the total space of :
_/_ : β {β β'} (A : Type β) (R : A β A β Type β') β Type (β β β') A / R = Coeq (/-left {R = R}) /-right quot : β {β β'} {A : Type β} {R : A β A β Type β'} {x y : A} β R x y β Path (A / R) (inc x) (inc y) quot r = glue (_ , _ , r)
Using Coeq-elim, we can recover the elimination principle for quotients:
Quot-elim : β {β} {B : A / R β Type β} β (β x β is-set (B x)) β (f : β x β B (inc x)) β (β x y (r : R x y) β PathP (Ξ» i β B (quot r i)) (f x) (f y)) β β x β B x Quot-elim bset f r = Coeq-elim bset f Ξ» { (x , y , w) β r x y w }
Effectivityπ
The most well-behaved case of quotients is when takes values in propositions, is reflexive, transitive and symmetric (an equivalence relation). In this case, we have that the quotient is effective: The map quot is an equivalence.
module _ {A : Type β} {R : A β A β Type β'} (Rp : β x y β is-prop (R x y)) (rr : β {x} β R x x) (rt : β {x y z} β R x y β R y z β R x z) (rs : β {x y} β R x y β R y x) where
We will show this using an encode-decode method. For each , we define a type family , which represents an equality . Importantly, the fibre over will be , so that the existence of functions converting between and paths is enough to establish effectivity of the quotient.
private Code : A β A / R β Prop β' Code x = Quot-elim (Ξ» x β n-Type-is-hlevel 1) (Ξ» y β {- 1 -} R x y , Rp x y) Ξ» y z r β n-ua (prop-ext (Rp _ _) (Rp _ _) (Ξ» z β rt z r) Ξ» z β rt z (rs r))
We do quotient induction into the type of propositions, which by univalence is a set. Since the fibre over must be , thatβs what we give for the inc constructor ({- 1 -}
, above). For this to respect the quotient, it suffices to show that, given , we have , which follows from the assumption that is an equivalence relation ({- 2 -}
).
encode : β x y (p : inc x β‘ y) β β£ Code x y β£ encode x y p = subst (Ξ» y β β£ Code x y β£) p rr decode : β x y (p : β£ Code x y β£) β inc x β‘ y decode x y p = Coeq-elim-prop {C = Ξ» y β (p : β£ Code x y β£) β inc x β‘ y} (Ξ» _ β Ξ -is-hlevel 1 Ξ» _ β squash _ _) (Ξ» y r β quot r) y p
For encode, it suffices to transport the proof that is reflexive along the given proof, and for decoding, we eliminate from the quotient to a proposition. It boils down to establishing that , which is what the constructor quot says. Putting this all together, we get a proof that equivalence relations are effective.
effective : β {x y : A} β is-equiv (quot {R = R}) effective {x = x} {y} = prop-ext (Rp x y) (squash _ _) (decode x (inc y)) (encode x (inc y)) .snd