open import 1Lab.HLevel open import 1Lab.Equiv open import 1Lab.Path open import 1Lab.Type module 1Lab.Type.Pi where
Properties of Π types🔗
This module contains properties of dependent function types, not necessarily organised in any way.
Closure under equivalences🔗
Univalence automatically implies that every type former respects equivalences. However, this theorem is limited to equivalences between types in the same universe. Thus, there are functions to perturb the codomain of a dependent function by an equivalence across universe levels:
Π-cod≃ : ((x : A) → P x ≃ Q x) → ((x : A) → P x) ≃ ((x : A) → Q x) Π-cod≃ k .fst f x = k x .fst (f x) Π-cod≃ k .snd .is-eqv f .centre .fst x = equiv-centre (k x) (f x) .fst Π-cod≃ k .snd .is-eqv f .centre .snd i x = equiv-centre (k x) (f x) .snd i Π-cod≃ k .snd .is-eqv f .paths (g , p) i .fst x = equiv-path (k x) (f x) (g x , λ j → p j x) i .fst Π-cod≃ k .snd .is-eqv f .paths (g , p) i .snd j x = equiv-path (k x) (f x) (g x , λ k → p k x) i .snd j Π-impl-cod≃ : ((x : A) → P x ≃ Q x) → ({x : A} → P x) ≃ ({x : A} → Q x) Π-impl-cod≃ k .fst f {x} = k x .fst (f {x}) Π-impl-cod≃ k .snd .is-eqv f .centre .fst {x} = equiv-centre (k x) (f {x}) .fst Π-impl-cod≃ k .snd .is-eqv f .centre .snd i {x} = equiv-centre (k x) (f {x}) .snd i Π-impl-cod≃ k .snd .is-eqv f .paths (g , p) i .fst {x} = equiv-path (k x) (f {x}) (g {x} , λ j → p j {x}) i .fst Π-impl-cod≃ k .snd .is-eqv f .paths (g , p) i .snd j {x} = equiv-path (k x) (f {x}) (g {x} , λ k → p k {x}) i .snd j
For non-dependent functions, we can easily perturb both domain and codomain:
function≃ : (A ≃ B) → (C ≃ D) → (A → C) ≃ (B → D) function≃ dom rng = Iso→Equiv the-iso where rng-iso = is-equiv→is-iso (rng .snd) dom-iso = is-equiv→is-iso (dom .snd) the-iso : Iso _ _ the-iso .fst f x = rng .fst (f (dom-iso .is-iso.inv x)) the-iso .snd .is-iso.inv f x = rng-iso .is-iso.inv (f (dom .fst x)) the-iso .snd .is-iso.rinv f = funext λ x → rng-iso .is-iso.rinv _ ∙ ap f (dom-iso .is-iso.rinv _) the-iso .snd .is-iso.linv f = funext λ x → rng-iso .is-iso.linv _ ∙ ap f (dom-iso .is-iso.linv _)
Dependent Funext🔗
When the domain and codomain are simple types (rather than a higher shape), paths in function spaces are characterised by funext. We can generalise this to funext-dep
, in which the domain and codomain are allowed to be lines of types:
funext-dep : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ( {x₀ : A i0} {x₁ : A i1} → (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁) ) → PathP (λ i → (x : A i) → B i x) f g funext-dep {A = A} {B} {f} {g} h i x = comp (λ k → B i (coei→i A i x k)) (λ k → λ { (i = i0) → f (coei→i A i0 x k) ; (i = i1) → g (coei→i A i1 x k) }) (h (λ j → coe A i j x) i)
A very ugly cubical argument shows that this function is an equivalence:
funext-dep≃ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ( {x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁) ) ≃ PathP (λ i → (x : A i) → B i x) f g funext-dep≃ {A = A} {B} {f} {g} = Iso→Equiv isom where open is-iso isom : Iso _ _ isom .fst = funext-dep isom .snd .is-iso.inv q p i = q i (p i) isom .snd .rinv q m i x = comp (λ k → B i (coei→i A i x (k ∨ m))) (λ k → λ { (i = i0) → f (coei→i A i0 x (k ∨ m)) ; (i = i1) → g (coei→i A i1 x (k ∨ m)) ; (m = i1) → q i x }) (q i (coei→i A i x m)) isom .snd .linv h m p i = comp (λ k → B i (lemi→i m k)) (λ k → λ { (i = i0) → f (lemi→i m k) ; (i = i1) → g (lemi→i m k) ; (m = i1) → h p i }) (h (λ j → lemi→j j m) i) where lemi→j : ∀ j → coe A i j (p i) ≡ p j lemi→j j = coe (λ k → coe A i k (p i) ≡ p k) i j (coei→i A i (p i)) lemi→i : Square (lemi→j i) (coei→i A i (p i)) refl refl lemi→i = sym (coei→i (λ k → coe A i k (p i) ≡ p k) i (coei→i A i (p i))) ◁ λ m k → lemi→j i (m ∨ k) hetero-homotopy≃homotopy : {A : I → Type ℓ} {B : (i : I) → Type ℓ₁} {f : A i0 → B i0} {g : A i1 → B i1} → ({x₀ : A i0} {x₁ : A i1} → PathP A x₀ x₁ → PathP B (f x₀) (g x₁)) ≃ ((x₀ : A i0) → PathP B (f x₀) (g (coe0→1 A x₀))) hetero-homotopy≃homotopy {A = A} {B} {f} {g} = Iso→Equiv isom where open is-iso isom : Iso _ _ isom .fst h x₀ = h (SinglP-is-contr A x₀ .centre .snd) isom .snd .inv k {x₀} {x₁} p = subst (λ fib → PathP B (f x₀) (g (fib .fst))) (SinglP-is-contr A x₀ .paths (x₁ , p)) (k x₀) isom .snd .rinv k = funext λ x₀ → ap (λ α → subst (λ fib → PathP B (f x₀) (g (fib .fst))) α (k x₀)) (is-prop→is-set SinglP-is-prop (SinglP-is-contr A x₀ .centre) _ (SinglP-is-contr A x₀ .paths (SinglP-is-contr A x₀ .centre)) refl) ∙ transport-refl (k x₀) isom .snd .linv h j {x₀} {x₁} p = transp (λ i → PathP B (f x₀) (g (SinglP-is-contr A x₀ .paths (x₁ , p) (i ∨ j) .fst))) j (h (SinglP-is-contr A x₀ .paths (x₁ , p) j .snd))