open import Cat.Diagram.Everything
open import Cat.Functor.Everything
open import Cat.Prelude
open import Topoi.Classifying.Diaconescu
open import Topoi.Reasoning
open import Topoi.Base
open import Data.Fin
module wip.flat
{o κ} {C : Precategory κ κ} {E : Precategory o κ}
(T : Topos κ E)
where
private
module E = Sheaf-topos T
abstract
colim : is-cocomplete κ κ E
colim = Topos-is-cocomplete T
open Cocone-hom
open Cone-hom
open Terminal
open Initial
open Functor
open Cocone
open Cone
{-
factor
: (F : Functor C E) {I : Precategory κ κ} {G : Functor I C}
→ (K : Cone G)
→ E.Hom (F-map-cone F K .apex) (Topos-is-complete T (F F∘ G) .top .apex)
factor F {G = G} K =
Topos-is-complete T (F F∘ G) .has⊤ (F-map-cone F K) .centre .hom
Internally-flat : Functor C E → Type _
Internally-flat F =
∀ {A} {I : Precategory κ κ} {G : Functor I C} {f g : E.Hom _ A}
→ (∀ {K : Cone G} → f E.∘ factor F K ≡ g E.∘ factor F K)
→ f ≡ g
lemma
: ∀ (F : Functor C E) {X}
→ Realisation colim F .F₀ X E.≅ colim {! !} .bot .coapex
-}