open import Cat.Diagram.Everything open import Cat.Functor.Everything open import Cat.Prelude open import Topoi.Classifying.Diaconescu open import Topoi.Reasoning open import Topoi.Base open import Data.Fin module wip.flat {o κ} {C : Precategory κ κ} {E : Precategory o κ} (T : Topos κ E) where private module E = Sheaf-topos T abstract colim : is-cocomplete κ κ E colim = Topos-is-cocomplete T open Cocone-hom open Cone-hom open Terminal open Initial open Functor open Cocone open Cone {- factor : (F : Functor C E) {I : Precategory κ κ} {G : Functor I C} → (K : Cone G) → E.Hom (F-map-cone F K .apex) (Topos-is-complete T (F F∘ G) .top .apex) factor F {G = G} K = Topos-is-complete T (F F∘ G) .has⊤ (F-map-cone F K) .centre .hom Internally-flat : Functor C E → Type _ Internally-flat F = ∀ {A} {I : Precategory κ κ} {G : Functor I C} {f g : E.Hom _ A} → (∀ {K : Cone G} → f E.∘ factor F K ≡ g E.∘ factor F K) → f ≡ g lemma : ∀ (F : Functor C E) {X} → Realisation colim F .F₀ X E.≅ colim {! !} .bot .coapex -}