open import Cat.CartesianClosed.Instances.PSh open import Cat.Diagram.Everything open import Cat.Functor.Everything open import Cat.Instances.Functor open import Cat.Prelude open import Topoi.Base import Cat.Functor.Reasoning as Func import Cat.Reasoning as Cat module Topoi.Reasoning where
Reasoning in topoi🔗
As mentioned in the overture on topos theory, categories of sheaves are incredibly nice categories to work in logically, mirroring many of the same properties of the category of Sets. This follows from the fact that they are reflective subcategories of presheaf categories, and those categories enjoy many of the exactness properties of by virtue of being functor categories.
This module provides a companion to the overture which makes it more convenient to reason about a particular sheaf topos by computing explicit descriptions of finite limits and colimits, and establishing the key exactness properties of a topos: Coproducts are disjoint, equivalence relations are effective, and colimits are stable under pullback.
module Sheaf-topos {o ℓ} {𝒯 : Precategory o ℓ} (T : Topos ℓ 𝒯) where open Cat 𝒯 public open _⊣_ (T .Topos.L⊣ι) public module L = Func (T .Topos.L) module L-lex = is-lex (T .Topos.L-lex) module ι = Func (T .Topos.ι) open Topos T using (site) public module Presh = Cat (PSh ℓ site) Lι-iso : ∀ x → is-invertible (counit.ε x) Lι-iso x = iso→invertible (is-reflective→counit-is-iso (T .Topos.L⊣ι) (T .Topos.has-ff)) ε⁻¹ : Id => T .Topos.L F∘ T .Topos.ι ε⁻¹ = Cat._≅_.from (is-reflective→counit-iso (T .Topos.L⊣ι) (T .Topos.has-ff)) module ε⁻¹ = _=>_ ε⁻¹ psh-equal : ∀ {X Y} {f g : Hom X Y} → ι.₁ f ≡ ι.₁ g → f ≡ g psh-equal = fully-faithful→faithful {F = T .Topos.ι} (T .Topos.has-ff)
Terminology: We will refer to the objects of , the topos, as sheaves, and the objects of as presheaves. Correspondingly, the left adjoint functor is called sheafification.
Limits🔗
Since the sheafification functor is left exact and the inclusion functor is fully faithful (thus the adjunction counit is an isomorphism, c.f. Lι-iso), we can compute limits directly in the presheaf category and sheafify. Unfolding the result of this procedure, rather than appealing to the equivalence , yields much better computational properties. We do it by hand for the terminal object, binary products, and binary pullbacks.
open Terminal terminal-sheaf : Terminal 𝒯 terminal-sheaf .top = L.₀ (PSh-terminal {C = site} .top) terminal-sheaf .has⊤ = L-lex.pres-⊤ (PSh-terminal {C = site} .has⊤) product-sheaf : ∀ A B → Product 𝒯 A B product-sheaf A B = product′ where product-presheaf : Product (PSh ℓ site) (ι.₀ A) (ι.₀ B) product-presheaf = PSh-products {C = site} _ _ open Product product′ : Product 𝒯 A B product′ .apex = L.₀ (product-presheaf .apex) product′ .π₁ = counit.ε _ ∘ L.₁ (product-presheaf .π₁) product′ .π₂ = counit.ε _ ∘ L.₁ (product-presheaf .π₂) product′ .has-is-product = let prod = L-lex.pres-product (PSh-terminal {C = site} .has⊤) (product-presheaf .has-is-product) in is-product-iso 𝒯 (Lι-iso _) (Lι-iso _) prod open Cartesian 𝒯 product-sheaf public
The computation for finite connected limits (pullbacks, equalisers) is a bit more involved, but not by much:
pullback-sheaf : ∀ {X Y Z} (f : Hom X Z) (g : Hom Y Z) → Pullback 𝒯 f g pullback-sheaf f g = pullback′ where pullback-presheaf : Pullback (PSh ℓ site) (ι.₁ f) (ι.₁ g) pullback-presheaf = PSh-pullbacks {C = site} _ _ open Pullback open is-pullback module Pb = Pullback pullback-presheaf module lpb = is-pullback (L-lex.pres-pullback (pullback-presheaf .has-is-pb)) pullback′ : Pullback 𝒯 f g pullback′ .apex = L.₀ Pb.apex pullback′ .p₁ = counit.ε _ ∘ L.₁ Pb.p₁ pullback′ .p₂ = counit.ε _ ∘ L.₁ Pb.p₂ pullback′ .has-is-pb = pb′ where pb′ : is-pullback 𝒯 _ f _ g pb′ .square = square′ where abstract square′ : f ∘ counit.ε _ ∘ L.₁ Pb.p₁ ≡ g ∘ counit.ε _ ∘ L.₁ Pb.p₂ square′ = f ∘ counit.ε _ ∘ L.₁ Pb.p₁ ≡⟨ extendl (sym (counit.is-natural _ _ _)) ⟩≡ counit.ε _ ∘ L.₁ (ι.₁ f) ∘ L.₁ Pb.p₁ ≡⟨ refl⟩∘⟨ lpb.square ⟩≡ counit.ε _ ∘ L.₁ (ι.₁ g) ∘ L.₁ Pb.p₂ ≡⟨ extendl (counit.is-natural _ _ _) ⟩≡ g ∘ counit.ε _ ∘ L.₁ Pb.p₂ ∎ pb′ .limiting {p₁' = p₁'} {p₂'} p = lpb.limiting {p₁' = ε⁻¹.η _ ∘ p₁'} {p₂' = ε⁻¹.η _ ∘ p₂'} path where abstract path : L.₁ (ι.₁ f) ∘ ε⁻¹.η _ ∘ p₁' ≡ L.₁ (ι.₁ g) ∘ ε⁻¹.η _ ∘ p₂' path = L.₁ (ι.₁ f) ∘ ε⁻¹.η _ ∘ p₁' ≡⟨ extendl (sym (ε⁻¹.is-natural _ _ _)) ⟩≡ ε⁻¹.η _ ∘ f ∘ p₁' ≡⟨ refl⟩∘⟨ p ⟩≡ ε⁻¹.η _ ∘ g ∘ p₂' ≡⟨ extendl (ε⁻¹.is-natural _ _ _) ⟩≡ L.₁ (ι.₁ g) ∘ ε⁻¹.η _ ∘ p₂' ∎ pb′ .p₁∘limiting = pullr lpb.p₁∘limiting ∙ cancell (Lι-iso _ .is-invertible.invl) pb′ .p₂∘limiting = pullr lpb.p₂∘limiting ∙ cancell (Lι-iso _ .is-invertible.invl) pb′ .unique p q = lpb.unique (sym ( ap₂ _∘_ refl (sym p ∙ sym (assoc _ _ _)) ∙ cancell (Lι-iso _ .is-invertible.invr))) (sym ( ap₂ _∘_ refl (sym q ∙ sym (assoc _ _ _)) ∙ cancell (Lι-iso _ .is-invertible.invr))) finitely-complete : Finitely-complete 𝒯 finitely-complete .Finitely-complete.terminal = terminal-sheaf finitely-complete .Finitely-complete.products = product-sheaf finitely-complete .Finitely-complete.equalisers = with-pullbacks 𝒯 terminal-sheaf pullback-sheaf .Finitely-complete.equalisers finitely-complete .Finitely-complete.pullbacks = pullback-sheaf