open import 1Lab.Prelude open import Agda.Builtin.Maybe open import Data.Fin.Base open import Data.Sum module Data.Fin.Closure where
Closure of finite sets🔗
In this module, we prove that the finite sets are closed under “typal arithmetic”: The initial and terminal objects are finite (they have 1 and 0 elements respectively), products of finite sets are finite, coproducts of finite sets are finite, and functions between finite sets are finite. Moreover, these operations all correspond to arithmetic operations on the natural number indices: , etc.
Zero, one, successors🔗
The finite set is an initial object, and the finite set is a terminal object:
Finite-zero-is-initial : Fin 0 ≃ ⊥ Finite-zero-is-initial .fst () Finite-zero-is-initial .snd .is-eqv () Finite-one-is-contr : is-contr (Fin 1) Finite-one-is-contr .centre = fzero Finite-one-is-contr .paths fzero = refl
The successor operation on indices corresponds to taking coproducts with the unit set:
Finite-successor : Fin (suc n) ≃ (⊤ ⊎ Fin n) Finite-successor {n} = Iso→Equiv (f , iso g rinv linv) where f : Fin (suc n) → ⊤ ⊎ Fin n f fzero = inl tt f (fsuc x) = inr x g : ⊤ ⊎ Fin n → Fin (suc n) g (inr x) = fsuc x g (inl _) = fzero rinv : is-right-inverse g f rinv (inr _) = refl rinv (inl _) = refl linv : is-left-inverse g f linv fzero = refl linv (fsuc x) = refl
Addition🔗
For binary coproducts, we prove the correspondence with addition in steps, to make the proof clearer:
Finite-coproduct : (Fin n ⊎ Fin m) ≃ Fin (n + m) Finite-coproduct {zero} {m} = (Fin 0 ⊎ Fin m) ≃⟨ ⊎-apl Finite-zero-is-initial ⟩≃ (⊥ ⊎ Fin m) ≃⟨ ⊎-zerol ⟩≃ Fin m ≃∎ Finite-coproduct {suc n} {m} = (Fin (suc n) ⊎ Fin m) ≃⟨ ⊎-apl Finite-successor ⟩≃ ((⊤ ⊎ Fin n) ⊎ Fin m) ≃⟨ ⊎-assoc ⟩≃ (⊤ ⊎ (Fin n ⊎ Fin m)) ≃⟨ ⊎-apr (Finite-coproduct {n} {m}) ⟩≃ (⊤ ⊎ Fin (n + m)) ≃⟨ Finite-successor e⁻¹ ⟩≃ Fin (suc (n + m)) ≃∎
Sums🔗
We also have a correspondence between “coproducts” and “addition” in the iterated case: If you have a family of finite types (represented by a map to their cardinalities), the dependent sum of that family is equivalent to the iterated binary sum of the cardinalities:
sum : ∀ n → (Fin n → Nat) → Nat sum zero f = zero sum (suc n) f = f fzero + sum n (f ∘ fsuc)
In this case, the isomorphism is constructed directly:
Finite-sum : (B : Fin n → Nat) → Σ (Fin ∘ B) ≃ Fin (sum n B) Finite-sum {zero} B .fst () Finite-sum {zero} B .snd .is-eqv () Finite-sum {suc n} B = Finite-coproduct .fst ∘ f , ∙-is-equiv (is-iso→is-equiv f-iso) (Finite-coproduct .snd) where rec = Finite-sum (B ∘ fsuc) f : Σ (Fin ∘ B) → Fin (B fzero) ⊎ Fin (sum n (B ∘ fsuc)) f (fzero , x) = inl x f (fsuc x , y) = inr (rec .fst (x , y)) f-iso : is-iso f f-iso .is-iso.inv (inl x) = fzero , x f-iso .is-iso.inv (inr x) with equiv→inverse (rec .snd) x ... | x , y = fsuc x , y f-iso .is-iso.rinv (inl x) = refl f-iso .is-iso.rinv (inr x) = ap inr (equiv→section (rec .snd) _) f-iso .is-iso.linv (fzero , x) = refl f-iso .is-iso.linv (fsuc x , y) = Σ-pathp (ap (fsuc ∘ fst) (equiv→retraction (rec .snd) _)) (ap snd (equiv→retraction (rec .snd) _))
Multiplication🔗
Recall (from middle school) that the product is the same thing as summing together copies of the number . Correspondingly, we can use the theorem above for general sums to establish the case of binary products:
Finite-product : (Fin n × Fin m) ≃ Fin (n * m) Finite-product {n} {m} = (Fin n × Fin m) ≃⟨ Finite-sum (λ _ → m) ⟩≃ Fin (sum n (λ _ → m)) ≃⟨ cast (sum≡* n m) , cast-is-equiv _ ⟩≃ Fin (n * m) ≃∎ where sum≡* : ∀ n m → sum n (λ _ → m) ≡ n * m sum≡* zero m = refl sum≡* (suc n) m = ap (m +_) (sum≡* n m)