open import 1Lab.Reflection.Record open import Cat.Instances.Functor open import Cat.Instances.Product open import Cat.Diagram.Product open import Cat.Prelude module Cat.Instances.StrictCat where
Strict precategories🔗
We call a precategory strict if its space of objects is a Set
. While general precategories are too homotopically interesting to fit into a Precategory (because functor spaces will not, in general, be h-sets), the strict categories do form a precategory, which we denote .
Strict-Cat : ∀ o h → Precategory _ _ Strict-Cat o h .Ob = Σ[ C ∈ Precategory o h ] (is-set (Ob C)) Strict-Cat o h .Hom (C , _) (D , _) = Functor C D Strict-Cat o h .id = Id Strict-Cat o h ._∘_ = _F∘_ Strict-Cat o h .idr _ = Functor-path (λ _ → refl) λ _ → refl Strict-Cat o h .idl _ = Functor-path (λ _ → refl) λ _ → refl Strict-Cat o h .assoc _ _ _ = Functor-path (λ _ → refl) λ _ → refl
This assembles into a Precategory because the only bit of a Functor that doesn’t have a fixed h-level is the object mapping; By asking that D be a strict category, this fixes the functors to be sets.
Strict-Cat o h .Hom-set _ (D , dset) = Functor-is-set dset
Products🔗
We prove that Strict-Cat has products. This is because is , and h-levels are closed under products.
Strict-Cat-Product : {C D : Precategory o h} → (cob : is-set (Ob C)) (dob : is-set (Ob D)) → Product (Strict-Cat o h) (C , cob) (D , dob) Strict-Cat-Product {C = C} {D = D} cob dob = prod where prod : Product (Strict-Cat _ _) (C , cob) (D , dob) prod .apex = C ×Cat D , ×-is-hlevel 2 cob dob prod .π₁ = Fst {C = C} {D = D} prod .π₂ = Snd {C = C} {D = D} prod .has-is-product .⟨_,_⟩ p q = Cat⟨ p , q ⟩Cat prod .has-is-product .π₁∘factor = Functor-path (λ _ → refl) λ _ → refl prod .has-is-product .π₂∘factor = Functor-path (λ _ → refl) λ _ → refl prod .has-is-product .unique other p q = Functor-path (λ x i → F₀ (p i) x , F₀ (q i) x) λ f i → F₁ (p i) f , F₁ (q i) f