open import Cat.Functor.Equivalence open import Cat.Instances.Elements open import Cat.Instances.Functor open import Cat.Instances.Slice open import Cat.Functor.Base open import Cat.Functor.Hom open import Cat.Prelude module Cat.Instances.Slice.Presheaf {o ℓ} {C : Precategory o ℓ} where
Slices of presheaf categories🔗
We prove that slices of a presheaf category are again presheaf categories. Specifically, for a presheaf, we have an isomorphism , where denotes the category of elements of .
An object in the slice consists of a functor together with a natural transformation . To transform this data into a functor , observe that for each element in , the fibre is a set. But why this choice in particular? Well, observe that is essentially the total space of — so that what we’re doing here is proving an equivalence between fibrations and dependent functions! This is in line with the existence of object classifiers, and in the 1-categorical level, with slices of Sets.
In fact, since we have , that latter equivalence is a special case of the one constructed here — where in the calculation below, denotes the constant presheaf . The category of elements of a presheaf consists of pairs where , of which there is only one choice, and .
module _ {P : Functor (C ^op) (Sets κ)} where private module P = Functor P slice-ob→presheaf : Ob (Slice Cat[ C ^op , Sets κ ] P) → Functor (∫ C P ^op) (Sets κ) slice-ob→presheaf sl .F₀ (elem x s) = fibre (sl .map .η x) s , Σ-is-hlevel 2 (sl .domain .F₀ _ .is-tr) λ _ → is-prop→is-set (P.₀ _ .is-tr _ _) slice-ob→presheaf sl .F₁ eh (i , p) = sl .domain .F₁ (eh .hom) i , happly (sl .map .is-natural _ _ _) _ ·· ap (P.₁ _) p ·· eh .commute
Keeping with the theme, in the other direction, we take a total space rather than a family of fibres, with fibration being the first projection fst:
presheaf→slice-ob : Functor (∫ C P ^op) (Sets κ) → Ob (Slice Cat[ C ^op , Sets κ ] P) presheaf→slice-ob y = obj where obj : /-Obj {C = Cat[ _ , _ ]} P obj .domain .F₀ c = Σ[ sect ∈ ∣ P.₀ c ∣ ] ∣ y .F₀ (elem c sect) ∣ , Σ-is-hlevel 2 (P.₀ _ .is-tr) λ _ → y .F₀ _ .is-tr obj .domain .F₁ f (x , p) = P.₁ f x , y .F₁ (elem-hom f refl) p obj .map .η x = fst
Since the rest of the construction is routine calculation, we present it without comment.
slice→total : Functor (Slice Cat[ C ^op , Sets κ ] P) Cat[ (∫ C P) ^op , Sets κ ] slice→total = func where func : Functor (Slice Cat[ C ^op , Sets κ ] P) Cat[ (∫ C P) ^op , Sets κ ] func .F₀ = slice-ob→presheaf func .F₁ {x} {y} h .η i arg = h .map .η (i .ob) (arg .fst) , ap (λ e → e .η _ (arg .fst)) (h .commutes) ∙ arg .snd func .F₁ {x} {y} h .is-natural _ _ _ = funext λ i → Σ-prop-path (λ _ → P.₀ _ .is-tr _ _) (happly (h .map .is-natural _ _ _) _) func .F-id = Nat-path (λ x → funext λ y → Σ-prop-path (λ _ → P.₀ _ .is-tr _ _) refl) func .F-∘ f g = Nat-path (λ x → funext λ y → Σ-prop-path (λ _ → P.₀ _ .is-tr _ _) refl) slice→total-is-ff : is-fully-faithful slice→total slice→total-is-ff {x} {y} = is-iso→is-equiv (iso inv rinv linv) where inv : Hom Cat[ ∫ C P ^op , Sets _ ] _ _ → Slice Cat[ C ^op , Sets _ ] P .Hom _ _ inv nt .map .η i o = nt .η (elem _ (x .map .η i o)) (o , refl) .fst inv nt .map .is-natural _ _ f = funext λ z → ap (λ e → nt .η _ e .fst) (Σ-prop-path (λ _ → P.₀ _ .is-tr _ _) refl) ∙ ap fst (happly (nt .is-natural _ _ (elem-hom f (happly (sym (x .map .is-natural _ _ _)) _))) _) inv nt .commutes = Nat-path λ z → funext λ w → nt .η (elem _ (x .map .η _ _)) (w , refl) .snd rinv : is-right-inverse inv (F₁ slice→total) rinv nt = Nat-path λ o → funext λ where (z , p) → Σ-prop-path (λ _ → P.₀ _ .is-tr _ _) (λ i → nt .η (elem (o .ob) (p i)) (z , (λ j → p (i ∧ j))) .fst) linv : is-left-inverse inv (F₁ slice→total) linv sh = /-Hom-path (Nat-path (λ z → refl)) open is-precat-iso slice→total-is-iso : is-precat-iso slice→total slice→total-is-iso .has-is-ff = slice→total-is-ff slice→total-is-iso .has-is-iso = is-iso→is-equiv isom where open is-iso isom : is-iso slice-ob→presheaf isom .inv = presheaf→slice-ob
Proving that the constructions presheaf→slice-ob and slice-ob→presheaf are inverses is mosly incredibly fiddly path algebra, so we omit the proof.