open import Cat.Instances.Shape.Terminal open import Cat.Instances.Functor open import Cat.Prelude module Cat.Instances.Comma where
Comma categories🔗
The comma category of two functors and with common codomain, written , is the directed, bicategorical analogue of a pullback square. It consists of maps in which all have their domain in the image of , and codomain in the image of .
The comma category is the universal way of completing a cospan of functors to a square, like the one below, which commutes up to a natural transformation . Note the similarity with a pullback square.
The objects in are given by triples where , , and .
record ↓Obj : Type (h ⊔ ao ⊔ bo) where no-eta-equality field {x} : Ob A {y} : Ob B map : Hom C (F₀ F x) (F₀ G y)
A morphism from is given by a pair of maps and , such that the square below commutes. Note that this is exactly the data of one component of a naturality square.
record ↓Hom (a b : ↓Obj) : Type (h ⊔ bh ⊔ ah) where no-eta-equality private module a = ↓Obj a module b = ↓Obj b field {α} : Hom A a.x b.x {β} : Hom B a.y b.y sq : b.map C.∘ F₁ F α ≡ F₁ G β C.∘ a.map
We omit routine characterisations of equality in ↓Hom from the page: ↓Hom-path and ↓Hom-set.
Identities and compositions are given componentwise:
↓id : ∀ {a} → ↓Hom a a ↓id .↓Hom.α = A.id ↓id .↓Hom.β = B.id ↓id .↓Hom.sq = ap (_ C.∘_) (F-id F) ·· C.id-comm ·· ap (C._∘ _) (sym (F-id G)) ↓∘ : ∀ {a b c} → ↓Hom b c → ↓Hom a b → ↓Hom a c ↓∘ {a} {b} {c} g f = composite where open ↓Hom module a = ↓Obj a module b = ↓Obj b module c = ↓Obj c module f = ↓Hom f module g = ↓Hom g composite : ↓Hom a c composite .α = g.α A.∘ f.α composite .β = g.β B.∘ f.β composite .sq = c.map C.∘ F₁ F (g.α A.∘ f.α) ≡⟨ ap (_ C.∘_) (F-∘ F _ _) ⟩≡ c.map C.∘ F₁ F g.α C.∘ F₁ F f.α ≡⟨ C.extendl g.sq ⟩≡ F₁ G g.β C.∘ b.map C.∘ F₁ F f.α ≡⟨ ap (_ C.∘_) f.sq ⟩≡ F₁ G g.β C.∘ F₁ G f.β C.∘ a.map ≡⟨ C.pulll (sym (F-∘ G _ _)) ⟩≡ F₁ G (g.β B.∘ f.β) C.∘ a.map ∎
This assembles into a precategory.
_↓_ : Precategory _ _ _↓_ .Ob = ↓Obj _↓_ .Hom = ↓Hom _↓_ .Hom-set = ↓Hom-set _↓_ .id = ↓id _↓_ ._∘_ = ↓∘ _↓_ .idr f = ↓Hom-path (A.idr _) (B.idr _) _↓_ .idl f = ↓Hom-path (A.idl _) (B.idl _) _↓_ .assoc f g h = ↓Hom-path (A.assoc _ _ _) (B.assoc _ _ _)
We also have the projection functors onto the factors, and the natural transformation witnessing “directed commutativity” of the square.
Dom : Functor _↓_ A Dom .F₀ = ↓Obj.x Dom .F₁ = ↓Hom.α Dom .F-id = refl Dom .F-∘ _ _ = refl Cod : Functor _↓_ B Cod .F₀ = ↓Obj.y Cod .F₁ = ↓Hom.β Cod .F-id = refl Cod .F-∘ _ _ = refl θ : (F F∘ Dom) => (G F∘ Cod) θ = NT (λ x → x .↓Obj.map) λ x y f → f .↓Hom.sq