open import Cat.Functor.Adjoint open import Cat.Prelude import Cat.Functor.Reasoning as Func import Cat.Reasoning as Cat module Cat.Functor.Adjoint.Hom {o ℓ o′ ℓ′} {C : Precategory o ℓ} {D : Precategory o′ ℓ′} {L : Functor D C} {R : Functor C D} where
Adjoints as hom-isomorphisms🔗
Recall from the page on adjoint functors that an adjoint pair induces an isomorphism
of -sets, sending each morphism to its left and right adjuncts, respectively. What that page does not mention is that any functors with such a correspondence — as long as the isomorphism is natural — actually generates an adjunction , with the unit and counit given by the adjuncts of each identity morphism.
More precisely, the data we require is an equivalence (of sets) such that the equation
holds. While this may seem un-motivated, it’s really a naturality square for a transformation between the functors and whose data has been “unfolded” into elementary terms.
hom-iso→adjoints : (f : ∀ {x y} → C.Hom (L.₀ x) y → D.Hom x (R.₀ y)) → (eqv : ∀ {x y} → is-equiv (f {x} {y})) → ( ∀ {a b c d} (g : C.Hom a b) (h : D.Hom c d) x → f (g C.∘ x C.∘ L.₁ h) ≡ R.₁ g D.∘ f x D.∘ h) → L ⊣ R hom-iso→adjoints f f-equiv natural = adj′ where f⁻¹ : ∀ {x y} → D.Hom x (R.₀ y) → C.Hom (L.₀ x) y f⁻¹ = equiv→inverse f-equiv inv-natural : ∀ {a b c d} (g : C.Hom a b) (h : D.Hom c d) x → f⁻¹ (R.₁ g D.∘ x D.∘ h) ≡ g C.∘ f⁻¹ x C.∘ L.₁ h inv-natural g h x = ap fst $ is-contr→is-prop (f-equiv .is-eqv _) (f⁻¹ (R.₁ g D.∘ x D.∘ h) , refl) ( g C.∘ f⁻¹ x C.∘ L.₁ h , natural _ _ _ ∙ sym (equiv→section f-equiv _) ∙ ap (f ⊙ f⁻¹) (D.extendl (ap (R.₁ g D.∘_) (equiv→section f-equiv _))))
We do not require an explicit naturality witness for the inverse of , since if a natural transformation is componentwise invertible, then its inverse is natural as well. It remains to use our “binaturality” to compute that and do indeed give a system of adjunction units and co-units.
adj′ : L ⊣ R adj′ .unit .η x = f C.id adj′ .unit .is-natural x y h = f C.id D.∘ h ≡⟨ D.introl R.F-id ⟩≡ R.₁ C.id D.∘ f C.id D.∘ h ≡˘⟨ natural _ _ _ ⟩≡˘ f (C.id C.∘ C.id C.∘ L.₁ h) ≡⟨ ap f (C.cancell (C.idl _) ∙ C.intror (C.idl _ ∙ L.F-id)) ⟩≡ f (L.₁ h C.∘ C.id C.∘ L.₁ D.id) ≡⟨ natural _ _ C.id ⟩≡ R.₁ (L.₁ h) D.∘ f C.id D.∘ D.id ≡⟨ D.refl⟩∘⟨ D.idr _ ⟩≡ R.₁ (L.₁ h) D.∘ f C.id ∎ adj′ .counit .η x = f⁻¹ D.id adj′ .counit .is-natural x y f = f⁻¹ D.id C.∘ L.₁ (R.₁ f) ≡⟨ C.introl refl ⟩≡ C.id C.∘ f⁻¹ D.id C.∘ L.₁ (R.₁ f) ≡˘⟨ inv-natural _ _ _ ⟩≡˘ f⁻¹ (R.₁ C.id D.∘ D.id D.∘ R.₁ f) ≡⟨ ap f⁻¹ (D.cancell (D.idr _ ∙ R.F-id) ∙ D.intror (D.idl _)) ⟩≡ f⁻¹ (R.₁ f D.∘ D.id D.∘ D.id) ≡⟨ inv-natural _ _ _ ⟩≡ f C.∘ f⁻¹ D.id C.∘ L.₁ D.id ≡⟨ C.refl⟩∘⟨ C.elimr L.F-id ⟩≡ f C.∘ f⁻¹ D.id ∎ adj′ .zig = f⁻¹ D.id C.∘ L.₁ (f C.id) ≡⟨ C.introl refl ⟩≡ C.id C.∘ f⁻¹ D.id C.∘ L.₁ (f C.id) ≡˘⟨ inv-natural _ _ _ ⟩≡˘ f⁻¹ (R.₁ C.id D.∘ D.id D.∘ f C.id) ≡⟨ ap f⁻¹ (D.cancell (D.idr _ ∙ R.F-id)) ⟩≡ f⁻¹ (f C.id) ≡⟨ equiv→retraction f-equiv _ ⟩≡ C.id ∎ adj′ .zag = R.₁ (f⁻¹ D.id) D.∘ f C.id ≡⟨ D.refl⟩∘⟨ D.intror refl ⟩≡ R.₁ (f⁻¹ D.id) D.∘ f C.id D.∘ D.id ≡˘⟨ natural _ _ _ ⟩≡˘ f (f⁻¹ D.id C.∘ C.id C.∘ L.₁ D.id) ≡⟨ ap f (C.elimr (C.idl _ ∙ L.F-id)) ⟩≡ f (f⁻¹ D.id) ≡⟨ equiv→section f-equiv _ ⟩≡ D.id ∎