open import Cat.Displayed.Base open import Cat.Prelude import Cat.Reasoning as CR module Cat.Displayed.Total {o ℓ o′ ℓ′} {B : Precategory o ℓ} (E : Displayed B o′ ℓ′) where open Displayed E open CR B
The Total Category of a Displayed Category🔗
So far, we’ve been thinking of displayed categories as “categories of structures” over some base category. However, it’s often useful to consider a more “bundled up” notion of structure, where the carrier and the structure are considered as a singular object. For instance, if we consider the case of algebraic structures, we often want to think about “a monoid” as a singular thing, as opposed to structure imposed atop some set.
Constructing the total category does exactly this. The objects are pairs of an object from the base, an object from the displayed category that lives over it.
Note that we use a sigma type here instead of a record for technical reasons: this makes it simpler to work with algebraic structures.
Total : Type (o ⊔ o′) Total = Σ[ Carrier ∈ Ob ] Ob[ Carrier ]
The situation is similar for morphisms: we bundle up a morphism from the base category along with a morphism that lives above it.
record Total-hom (X Y : Total) : Type (ℓ ⊔ ℓ′) where constructor total-hom field hom : Hom (X .fst) (Y .fst) preserves : Hom[ hom ] (X .snd) (Y .snd) open Total-hom
As is tradition, we need to prove some silly lemmas showing that the bundled morphisms form an hset, and another characterizing the paths between morphisms.
total-hom-is-set : ∀ (X Y : Total) → is-set (Total-hom X Y) total-hom-is-set X Y = is-hlevel≃ 2 (Iso→Equiv eqv e⁻¹) Total-hom′-is-set where Total-hom′-is-set : is-set _ Total-hom′-is-set = Σ-is-hlevel 2 (Hom-set _ _) λ f → Hom[ f ]-set _ _ total-hom-path : ∀ {X Y : Total} {f g : Total-hom X Y} → (p : f .hom ≡ g .hom) → f .preserves ≡[ p ] g .preserves → f ≡ g total-hom-path p p′ i .hom = p i total-hom-path {f = f} {g = g} p p′ i .preserves = p′ i
With all that in place, we can construct the total category!
∫ : Precategory (o ⊔ o′) (ℓ ⊔ ℓ′) ∫ .Precategory.Ob = Total ∫ .Precategory.Hom = Total-hom ∫ .Precategory.Hom-set = total-hom-is-set ∫ .Precategory.id = total-hom id id′ ∫ .Precategory._∘_ f g = total-hom (f .hom ∘ g .hom) (f .preserves ∘′ g .preserves) ∫ .Precategory.idr _ = total-hom-path (idr _) (idr′ _) ∫ .Precategory.idl _ = total-hom-path (idl _) (idl′ _) ∫ .Precategory.assoc _ _ _ = total-hom-path (assoc _ _ _) (assoc′ _ _ _)