open import Cat.Diagram.Colimit.Base
open import Cat.Instances.Discrete
open import Cat.Diagram.Pullback
open import Cat.Diagram.Initial
open import Cat.Prelude

module Cat.Diagram.Coproduct.Indexed {o } (C : Precategory o ) where

Indexed coproducts🔗

Indexed coproducts are the dual notion to indexed products, so see there for motivation and exposition.

record is-indexed-coproduct (F : Idx  C.Ob) (ι :  i  C.Hom (F i) S)
  : Type (o    level-of Idx) where
  no-eta-equality
  field
    match   :  {Y}  (∀ i  C.Hom (F i) Y)  C.Hom S Y
    commute :  {i} {Y} {f :  i  C.Hom (F i) Y}  match f C.∘ ι i  f i
    unique  :  {Y} {h : C.Hom S Y} (f :  i  C.Hom (F i) Y)
             (∀ i  h C.∘ ι i  f i)
             h  match f

  eta :  {Y} (h : C.Hom S Y)  h  match  i  h C.∘ ι i)
  eta h = unique _ λ _  refl

A category C\ca{C} admits indexed coproducts (of level \ell) if, for any type I:Type I : \ty\ \ell and family F:ICF : I \to \ca{C}, there is an indexed coproduct of FF.

record Indexed-coproduct (F : Idx  C.Ob) : Type (o    level-of Idx) where
  no-eta-equality
  field
    {ΣF}      : C.Ob
    ι         :  i  C.Hom (F i) ΣF
    has-is-ic : is-indexed-coproduct F ι
  open is-indexed-coproduct has-is-ic public

has-indexed-coproducts :    Type _
has-indexed-coproducts  =  {I : Type } (F : I  C.Ob)  Indexed-coproduct F

As colimits🔗

Similarly to the product case, when II is a groupoid, indexed coproducts correspond to discrete diagrams of shape II.

module _ {I : Type ℓ'} (i-is-grpd : is-groupoid I) (F : I  C.Ob) where
  open Cocone-hom
  open Initial
  open Cocone

  IC→Limit : Indexed-coproduct F  Colimit {C = C} (Disc-adjunct {iss = i-is-grpd} F)
  IC→Limit IC = colim where
    module IC = Indexed-coproduct IC

    thecolim : Cocone _
    thecolim .coapex = IC.ΣF
    thecolim .ψ = IC.ι
    thecolim .commutes {x} =
      J  y p  IC.ι y C.∘ subst (C.Hom (F x)  F) p C.id  IC.ι x)
        (C.elimr (transport-refl _))

    colim : Colimit _
    colim .bot = thecolim
    colim .has⊥ x .centre .hom = IC.match (x .ψ)
    colim .has⊥ x .centre .commutes o = IC.commute
    colim .has⊥ x .paths h = Cocone-hom-path _ (sym (IC.unique _ λ i  h .commutes _))

module _ {I : Type ℓ'} (isg : is-groupoid I) (F : Functor (Disc I isg) C) where
  private module F = Functor F
  open is-indexed-coproduct
  open Indexed-coproduct
  open Cocone-hom
  open Initial
  open Cocone

  Inj→Cocone :  {Y}  (∀ i  C.Hom (F.₀ i) Y)  Cocone F
  Inj→Cocone f .coapex = _
  Inj→Cocone f .ψ = f
  Inj→Cocone f .commutes {x} = J  y p  f y C.∘ F.₁ p  f x) (C.elimr F.F-id)

  Colimit→IC : Colimit {C = C} F  Indexed-coproduct F.₀
  Colimit→IC colim = the-ic where
    module colim = Cocone (colim .bot)

    the-ic : Indexed-coproduct _
    the-ic .ΣF = colim.coapex
    the-ic .ι  = colim.ψ
    the-ic .has-is-ic .match f = colim .has⊥ (Inj→Cocone f) .centre .hom
    the-ic .has-is-ic .commute = colim .has⊥ _ .centre .commutes _
    the-ic .has-is-ic .unique {h = h} f p i =
      colim .has⊥ (Inj→Cocone f) .paths h′ (~ i) .hom
      where
        h′ : Cocone-hom _ _ _
        h′ .hom = h
        h′ .commutes o = p _

Disjoint coproducts🔗

An indexed coproduct F\sum F is said to be disjoint if every one of its inclusions FiFF_i \to \sum F is monic, and, for unequal iji \ne j, the square below is a pullback with initial apex. Since the maps FiFFjF_i \to \sum F \ot F_j are monic, the pullback below computes the intersection of FiF_i and FjF_j as subobjects of F\sum F, hence the name disjoint coproduct: If \bot is an initial object, then FiFj=F_i \cap F_j = \emptyset.

record is-disjoint-coproduct (F : Idx  C.Ob) (ι :  i  C.Hom (F i) S)
  : Type (o    level-of Idx) where
  field
    is-coproduct         : is-indexed-coproduct F ι
    injections-are-monic :  i  C.is-monic (ι i)
    summands-intersect   :  i j  Pullback C (ι i) (ι j)
    different-images-are-disjoint
      :  i j  (i  j  )  is-initial C (summands-intersect i j .Pullback.apex)

Initial objects are disjoint🔗

We prove that if \bot is an initial object, then it is also an indexed coproduct — for any family C\bot \to \ca{C} — and furthermore, it is a disjoint coproduct.

is-initial→is-disjoint-coproduct
  :  {} {F :   C.Ob} {i :  i  C.Hom (F i) }
   is-initial C 
   is-disjoint-coproduct F i
is-initial→is-disjoint-coproduct {F = F} {i = i} init = is-disjoint where
  open is-indexed-coproduct
  is-coprod : is-indexed-coproduct F i
  is-coprod .match _ = init _ .centre
  is-coprod .commute {i = i} = absurd i
  is-coprod .unique {h = h} f p i = init _ .paths h (~ i)

  open is-disjoint-coproduct
  is-disjoint : is-disjoint-coproduct F i
  is-disjoint .is-coproduct = is-coprod
  is-disjoint .injections-are-monic i = absurd i
  is-disjoint .summands-intersect i j = absurd i
  is-disjoint .different-images-are-disjoint i j p = absurd i