open import Cat.Functor.Equivalence
open import Cat.Instances.Functor
open import Cat.Functor.Base
open import Cat.Prelude

import Cat.Reasoning

module Cat.Instances.Functor.Duality where

Duality of functor categories🔗

The duality involution Cop\ca{C}\op on categories extends to a “duality involution” FopF\op on functors. However, since this changes the type of the functor — the dual of F:CDF : \ca{C} \to \ca{D} is Fop:CDF^op : \ca{C} \to \ca{D} — it does not represent an involution on functor categories; Rather, it is an equivalence ()op:[C,D]op[Cop,Dop](-)\op : [\ca{C},\ca{D}]\op \cong [\ca{C}\op,\ca{D}\op].

op-functor→ : Functor (Cat[ C , D ] ^op) Cat[ C ^op , D ^op ]
op-functor→ .F₀ = Functor.op
op-functor→ .F₁ nt .η = nt .η
op-functor→ .F₁ nt .is-natural x y f = sym (nt .is-natural y x f)
op-functor→ .F-id = Nat-path  x  refl)
op-functor→ .F-∘ f g = Nat-path λ x  refl

op-functor-is-iso : is-precat-iso (op-functor→ {C = C} {D = D})
op-functor-is-iso = isom where
  open is-precat-iso
  open is-iso

  isom : is-precat-iso _
  isom .has-is-ff = is-iso→is-equiv ff where
    ff : is-iso (F₁ op-functor→)
    ff .inv nt .η = nt .η
    ff .inv nt .is-natural x y f = sym (nt .is-natural y x f)
    ff .rinv x = Nat-path λ x  refl
    ff .linv x = Nat-path λ x  refl
  isom .has-is-iso = is-iso→is-equiv (iso Functor.op
     x  Functor-path  x  refl)  x  refl))  x  F^op^op≡F))

This means, in particular, that it is an adjoint equivalence:

op-functor-is-equiv : is-equivalence (op-functor→ {C = C} {D = D})
op-functor-is-equiv = is-precat-iso→is-equivalence op-functor-is-iso

op-functor← : Functor Cat[ C ^op , D ^op ] (Cat[ C , D ] ^op)
op-functor← = is-equivalence.F⁻¹ op-functor-is-equiv

op-functor←→ : op-functor← {C = C} {D = D} F∘ op-functor→  Id
op-functor←→ {C = C} {D = D} = Functor-path  x  refl) λ {X} {Y} f  Nat-path λ x 
  (_ D.∘ f .η x) D.∘ _ ≡⟨ D.elimr (lemma {Y = Y}) 
  _ D.∘ f .η x         ≡⟨ D.eliml (lemma {Y = X}) 
  f .η x               
    module D = Cat.Reasoning D
    module C = Cat.Reasoning C

    lemma :  {Y : Functor C D} {x}
       coe0→1  i  D.Hom (F₀ Y (transp  j  C.Ob) i x)) (F₀ Y (transp  j  C.Ob) i x)))
    lemma {Y} {x} =
      from-pathp {A = λ i  D.Hom (F₀ Y (transp  j  C.Ob) i x)) (F₀ Y (transp  j  C.Ob) i x))}
        λ i 
          hcomp  { j (i = i0)
                   ; j (i = i1)  transport-filler  j  D.Hom (F₀ Y x) (F₀ Y x)) (~ j)
          (coe0→i  j  D.Hom (F₀ Y (transp  j  C.Ob) (i  j) x)) (F₀ Y (transp  j  C.Ob) (i  j) x))) i

module _ {o  o′ ℓ′} {C : Precategory o } {D : Precategory o′ ℓ′} {F G : Functor C D} where
    module CD = Cat.Reasoning Cat[ C , D ]
    module CopDop = Cat.Reasoning Cat[ C ^op , D ^op ]

  op-natural-iso : F CD.≅ G  (Functor.op F) CopDop.≅ (Functor.op G)
  op-natural-iso isom = CopDop.make-iso (_=>_.op isom.from) (_=>_.op
    (Nat-path  x  ap  e  e .η x) isom.invl))
    (Nat-path λ x  ap  e  e .η x) isom.invr)
    where module isom = CD._≅_ isom