open import Cat.Prelude import Cat.Diagram.Pullback import Cat.Reasoning module Cat.Diagram.Pullback.Properties {o ℓ} {C : Precategory o ℓ} where
Properties of pullbacks🔗
This module chronicles some general properties of pullbacks.
Pasting law🔗
The pasting law for pullbacks says that, if in the commutative diagram below the the right square is a pullback, then the left square is universal if, and only if, the outer rectangle is, too. Note the emphasis on the word commutative: if we don’t know that both squares (and the outer rectangle) all commute, the pasting law does not go through.
module _ {a b c d e f : Ob} {a→d : Hom a d} {a→b : Hom a b} {b→c : Hom b c} {d→e : Hom d e} {b→e : Hom b e} {e→f : Hom e f} {c→f : Hom c f} (right-pullback : is-pullback b→c c→f b→e e→f) where private module right = is-pullback right-pullback
Let’s start with proving that, if the outer rectangle is a pullback, then so is the left square. Assume, then, that we have some other object , which fits into a cone, like in the diagram below. I’ve coloured the two arrows we assume commutative.
pasting-outer→left-is-pullback : is-pullback (b→c ∘ a→b) c→f a→d (e→f ∘ d→e) → (square : b→e ∘ a→b ≡ d→e ∘ a→d) → is-pullback a→b b→e a→d d→e pasting-outer→left-is-pullback outer square = pb where module outer = is-pullback outer
To appeal to the universal property of the outer pullback, we must somehow extend our red cone over to one over . Can we do this? Yes! By assumption, the square on the right commutes, which lets us apply commutativity of the red diagram (the assumption in the code). Check out the calculation below:
abstract path : ∀ {P} {P→b : Hom P b} {P→d : Hom P d} (p : b→e ∘ P→b ≡ d→e ∘ P→d) → c→f ∘ b→c ∘ P→b ≡ (e→f ∘ d→e) ∘ P→d path {_} {P→b} {P→d} p = c→f ∘ b→c ∘ P→b ≡⟨ extendl right.square ⟩≡ e→f ∘ b→e ∘ P→b ≡⟨ ap (e→f ∘_) p ⟩≡ e→f ∘ d→e ∘ P→d ≡⟨ solve C ⟩≡ (e→f ∘ d→e) ∘ P→d ∎ pb : is-pullback _ _ _ _ pb .is-pullback.square = b→e ∘ a→b ≡⟨ square ⟩≡ d→e ∘ a→d ∎
We thus have an induced map , which, since is a pullback, makes everything in sight commute, and does so uniquely.
pb .limiting {p₁' = P→b} {p₂' = P→d} p = outer.limiting {p₁' = b→c ∘ P→b} {p₂' = P→d} (path p) pb .p₁∘limiting {p₁' = P→b} {p₂' = P→d} {p = p} = right.unique₂ {p = pulll right.square ∙ pullr p} (assoc _ _ _ ∙ outer.p₁∘limiting) (pulll square ∙ pullr outer.p₂∘limiting) refl p pb .p₂∘limiting {p₁' = P→b} {p₂' = P→d} {p = p} = outer.p₂∘limiting pb .unique {p = p} q r = outer.unique (sym (ap (_ ∘_) (sym q) ∙ assoc _ _ _)) r
For the converse, suppose that both small squares are a pullback, and we have a cone over . By the universal property of the right pullback, we can find a map forming the left leg of a cone over ; By the universal property of the left square, we then have a map , as we wanted.
pasting-left→outer-is-pullback : is-pullback a→b b→e a→d d→e → (square : c→f ∘ b→c ∘ a→b ≡ (e→f ∘ d→e) ∘ a→d) → is-pullback (b→c ∘ a→b) c→f a→d (e→f ∘ d→e) pasting-left→outer-is-pullback left square = pb where module left = is-pullback left pb : is-pullback (b→c ∘ a→b) c→f a→d (e→f ∘ d→e) pb .is-pullback.square = c→f ∘ b→c ∘ a→b ≡⟨ square ⟩≡ (e→f ∘ d→e) ∘ a→d ∎ pb .limiting {p₁' = P→c} {p₂' = P→d} x = left.limiting {p₁' = right.limiting (x ∙ sym (assoc _ _ _))} {p₂' = P→d} right.p₂∘limiting pb .p₁∘limiting = pullr left.p₁∘limiting ∙ right.p₁∘limiting pb .p₂∘limiting = left.p₂∘limiting pb .unique {p₁' = P→c} {P→d} {p = p} {lim'} q r = left.unique (right.unique (assoc _ _ _ ∙ q) s) r where s : b→e ∘ a→b ∘ lim' ≡ d→e ∘ P→d s = b→e ∘ a→b ∘ lim' ≡⟨ pulll left.square ⟩≡ (d→e ∘ a→d) ∘ lim' ≡⟨ pullr r ⟩≡ d→e ∘ P→d ∎
Monomorphisms🔗
Being a monomorphism is a “limit property”. Specifically, is a monomorphism iff. the square below is a pullback.
module _ {a b} {f : Hom a b} where is-monic→is-pullback : is-monic f → is-pullback id f id f is-monic→is-pullback mono .square = refl is-monic→is-pullback mono .limiting {p₁' = p₁'} p = p₁' is-monic→is-pullback mono .p₁∘limiting = idl _ is-monic→is-pullback mono .p₂∘limiting {p = p} = idl _ ∙ mono _ _ p is-monic→is-pullback mono .unique p q = introl refl ∙ p is-pullback→is-monic : is-pullback id f id f → is-monic f is-pullback→is-monic pb f g p = sym (pb .p₁∘limiting {p = p}) ∙ pb .p₂∘limiting
Pullbacks additionally preserve monomorphisms, as shown below:
is-monic→pullback-is-monic : ∀ {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y} → is-monic f → is-pullback p1 f p2 g → is-monic p2 is-monic→pullback-is-monic {f = f} {g} {p1 = p1} {p2} mono pb h j p = eq where module pb = is-pullback pb q : f ∘ p1 ∘ h ≡ f ∘ p1 ∘ j q = f ∘ p1 ∘ h ≡⟨ extendl pb.square ⟩≡ g ∘ p2 ∘ h ≡⟨ ap (g ∘_) p ⟩≡ g ∘ p2 ∘ j ≡˘⟨ extendl pb.square ⟩≡˘ f ∘ p1 ∘ j ∎ r : p1 ∘ h ≡ p1 ∘ j r = mono _ _ q eq : h ≡ j eq = pb.unique₂ {p = extendl pb.square} r p refl refl